Характеристика аспектов эксплуатации космических систем

Страница 2

Проблема энергопитания бортовой аппаратуры КА решается в нескольких направлениях:

использование солнечного излучения, преобразуемого в электроэнергию с помощью солнечных батарей (СБ) этот способ энергопитания, наиболее широко применяемый на современных КА, обеспечивает длительность работы аппаратуры до нескольких лет;

установка источников тока с высокой энергоотдачей на единицу массы — топливных элементов, вырабатывающих электроэнергию в результате электрохимических процессов между двумя рабочими веществами, например кислородом и водородом (полученная при этом вода может использоваться в системах жизнеобеспечения пилотируемых КА);

применение бортовых ядерных энергетических установок с реакторами и изотопными генераторами.

химические источники тока (аккумуляторы) применяются только на КА с малым временем работы аппаратуры (до 1…3 недель) или в качестве буферных батарей в системах энергопитания (например, в сочетании с СБ).

Полёт автоматических и пилотируемых КА требует радиосвязи с Землёй, передачи на Землю телеметрической и телевизионной (ТВ) информации, приёма радиокоманд, периодических измерений траектории движения КА, телефонной связи с космонавтами. Эти функции выполняют бортовые радиосистемы и наземные командно-измерительные пункты.

Одна из наиболее сложных проблем космических полётов — спуск КА на поверхность Земли и других небесных тел, когда космическая скорость КА должна быть уменьшена до нуля в момент посадки. Возможны два способа торможения КА: с использованием тормозящей реактивной силы; с помощью аэродинамических сил, возникающих при движении аппарата в атмосфере. Для реализации первого способа КА (или его часть – т. н. спускаемый аппарат) должен быть снабжён тормозной двигательной установкой (ТДУ) с большим запасом топлива; поэтому спуск с ракетным торможением применяется для посадки на небесные тела, лишённые атмосферы, например на Луну. Спуск с аэродинамическим торможением более выгоден (не требует ТДУ с большим запасом топлива) и является основным при осуществлении посадки КА на Землю.

При спуске по баллистической траектории перегрузки достигают 8…10; спуск по планирующей траектории, когда на спускаемый аппарат, кроме силы сопротивления, действует и подъёмная сила, позволяет уменьшить эти перегрузки в 1,5…2 раза. На участке спуска при движении в атмосфере имеет место интенсивный аэродинамический нагрев спускаемого аппарата. Поэтому он снабжается теплозащитным покрытием, создаваемым на основе керамических или органических материалов, обладающих высокой термостойкостью, малой теплопроводностью. В конце траектории спуска на высотах в несколько км скорость движения снижается до 150…250 м/с. Дальнейшее снижение скорости перед приземлением осуществляется обычно с помощью парашютной системы.

На современных КК применялись системы мягкой посадки (включение ТДУ непосредственно перед контактом с землёй), позволяющие уменьшить скорость приземления до нескольких м/с.

Конструкция КА отличается рядом особенностей, связанных со специфическими факторами космического пространства: глубоким вакуумом, наличием метеорных частиц, интенсивной радиации, невесомости. В вакууме изменяется характер процессов трения, возникает явление т. н. холодной сварки, что требует подбора соответствующих материалов для механизмов, герметизации отд. узлов и др.

Воздействие наиболее мелких метеорных частиц на поверхности КА при длительном полёте вызывает изменение оптических характеристик иллюминаторов, некоторых приборов, радиационных поверхностей и СБ, что требует применения специальных покрытий, особой обработки поверхности и др. Вероятность метеорного пробоя оболочек гермоотсеков современных КА невелика, а для больших КК и орбитальных станций, совершающих длительный полет, должна предусматриваться противометеорная защита. Космическая радиация (потоки заряженных частиц в радиационных поясах Земли и при солнечных вспышках) может влиять на СБ, детали из органических соединений и др. элементы КА, поэтому в ряде случаев на них наносят защитные покрытия.

Особые меры принимаются для защиты космонавтов от всплесков космической радиации. Высокая надёжность существенна для всех видов КА, особенно при наличии экипажа. Она обеспечивается комплексом мероприятий на всех этапах создания и подготовки к полёту КА, включая повышение надёжности его элементов, аппаратуры и оборудования, строгий технологический контроль на всех стадиях изготовления, тщательную отработку систем и агрегатов с имитацией условий космического полёта, проведение комплексных предполётных испытаний и др. Для повышения надёжности на КА применяют дублирование, троирование, резервирование отельных агрегатов и приборов, а также автоматические схемы распознавания отказов приборов или их элементов и их замены.

Понятно, что различные задачи выполняются различными аппаратами, т. е. космические аппараты в основном специализированы. Достаточно узкая специализация космических аппаратов, как и технических систем любого назначения, является следствием нашего желания добиться как можно более высокой их эффективности в выполнении поставленной цели.

Страницы: 1 2 3 4 5 6

Интересные статьи:

Скорость вращения галактик
Скорость вращения галактик Под скоростью вращения галактики подразумевается скорость вращения различных компонентов галактики вокруг её центра. Данная скорость — это суммарная скорость, приобретённая в ходе различных процессов. Скорость ...

Определение расстояний до звезд и планет
Вступление. Наши знания о Вселенной тесно связаны со способностью человека определять расстояния в пространстве. С незапамятных времен вопрос «как далеко?» играл первостепенную роль для астронома в его попытках познать свойства Вселенной, ...

Сатурн
Сатурн (астрономический знак H), планета, среднее расстояние от Солнца 9,54 а. е., период обращения 29,46 года, период вращения на экваторе (облачный слой) 10,2 ч, экваториальный диаметр 120 660 км, масса 5,68·1026 кг, имеет 17 спутников, ...