Строение галактик
Глава IV. Магнитные поля. Красное смещение
4.1 Магнитные поля галактик
В 1949 г. астрономы пришли к выводу, что в межзвездном пространстве существуют магнитные поля. Магнитное поле должно заполнять всю Нашу Галактику. В присутствии магнитного поля устанавливается динамическое равновесие между полем и движением вещества, происходит равномерное распределение энергий. Разряженный газ должен образовывать галактическую корону – сферическую подсистему толщиной в несколько тысяч парсек. В 1977 г. была разработана теория регулярного ускорения космических лучей на фронте ударной волны. Слабое магнитное поле может образоваться в небольшом объеме. Так, если в газе образовалось уплотнение, то электроны будут «рассасываться» быстрее, чем ионы, что приводит к возникновению слабых магнитных полей. Может происходить усиление поля (неоднородная температура вещества). В результате вращения Галактики конденсации межзвездного газа, пронизанные магнитными полями, вытягиваются, образуя спиральные ветви. Другое предположение: магнитное поле Галактики имеет внегалактическое происхождение. Слабое поле могло существовать веществе, из которого сформировалась Галактика. В процессе эволюции нашей звездной системы оно усиливалось и закручивалось ее вращением.
Первым признаком магнитного поля является поляризация света (открыта астрономами Домбровским и Хильтнером). Вторым свидетельством являются космические лучи – заряженные тяжёлые элементарные частицы высоких энергий, влетающие со всех сторон в земную атмосферу, движение которых отклоняется от прямолинейного из-за взаимодействия с магнитным полем Галактики. Мощные потоки заряженных тяжёлых элементарных частиц высоких энергий образуются при вспышках сверхновых звёзд (Гинзбург и Шкловский). И тогда заряженные тяжёлые частицы накапливаются в Галактике. Если в Галактике имеется магнитное поле, то эмиссионная линия нейтрального водорода должна обнаружить расщепление. Английский астроном Дэвис подтвердили это своим наблюдением.
Магнитное поле удерживает космические лучи в галактике, влияет на движение межзвездного газа. Поляризация обусловлена взаимодействием света с пылинками удлинённой формы, которые ориентированы магнитным полем. Более сильные поля связаны с плотными облаками газа. В галактической окрестности Солнца известны области регулярного поля с усиленным синхротронным излучением (дугообразно выступают над плоскостью галактического диска и являются старыми остатками вспышек сверхновых звёзд). В других спиральных галактиках обнаружены крупномасштабные магнитные поля, идущие вдоль спиральных ветвей. Они проявляются в повышенной интенсивности синхротронного излучения из области ветвей. В ветвях происходит сжатие газа, и магнитное поле, будучи «вмороженным» в газ, также сжимается. При этом оно «тянет» за собой релятивистские электроны. В результате увеличения напряжённости поля и плотности релятивистских электронов интенсивность синхротронного излучения увеличивается во много раз.
Магнитное поле в спиральных рукавах Нашей Галактики направлено приблизительно вдоль рукавов. давление поля в направлении, перпендикулярном силовым линиям, оказывается достаточным, чтобы уравновесить силу тяжести, действующую на газ. Это не позволяет межзвёздному газу стечь к плоскости Галактики и быстро сконденсироваться в звёзды. Можно сказать, что межзвёздный газ сохранился благодаря тому, что в нём есть магнитное поле.
4.2 Красное смещение. Закон Хаббла.
Постоянная Хаббла
Одна из проблем внегалактической астрономии связана с определением расстояний до галактик и их размеров. В настоящее время измерены красные смещения тысяч галактик и квазаров. В 1912 г. американский астроном В. Слайфер обнаружил эффект красного смещения в спектрах далёких галактик. В 1929 г. американский астроном Эдвин Хаббл, сравнивая расстояния до галактик и их красные смещения, обнаружил, что последние растут в среднем пропорционально расстояниям (закон Хаббла), что и подтверждало гипотезу об удалении галактик, т. е. о расширении Метагалактики – видимой части Вселенной.
Интересные статьи:
Планеты-гиганты. Плутон
Цель:
рассмотреть вопросы физической природы планет-гигантов.
Задачи
:
а) общеобразовательные-- формирование понятий об основных физических характеристиках планет-гигантов;
б) развивающие– формирование умения анализировать информацию; ...
Галилеевы спутники Юпитера
1. ИО
Ио
(греч. Ιώ) — спутник Юпитера, самый близкий к планете из четырёх галилеевых спутников. Отличается бурной вулканической активностью.
Вулканизм:
Ио обладает наибольшей вулканической активностью в Солнечной системе. Одн ...
Солнце и жизнь человека на земле
1.Интерес ученых к проблеме солнечно – земных связей вызван несколькими причинами. Прежде всего по мере выяснения физических сторон влияния Солнца на Землю выявилось громадное прикладное значение этой проблемы для радиосвязи, магнитной на ...