Современная космология и проблема скрытой массы во Вселенной

Страница 4

Теперь вспомним обо всем остальном веществе Вселенной вне шара и попытаемся учесть силы тяготения, им создаваемые. Для этого будем рассматривать последова­тельно сферические оболочки все большего и большего радиуса, охватывающие шар. Но, как было сказано выше, что сферически-симметричные слои вещества никаких грави­тационных сил внутри полости не создают. Следователь­но,

все эти сферически-симметричные оболочки (т. е. все остальное вещество Вселенной) ничего не добавят к силе притяжения, которое испытывает галактика на по­верхности шара к его центру. Такой же вывод справедлив в общей теории относительности. Теперь ясно, почему для вывода законов движе­ния масс в однородной Вселенной можно воспользовать­ся теорией Ньютона, а не Эйнштейна.

Мы выбрали шар достаточно малым, чтобы была применима теория Нью­тона для вычисления гравитационных сил, создаваемых его веществом. Массы остальной Вселенной, окружаю­щие шар, на силы гравитации в данном шаре никак не повлияют. Но никаких других сил в однородной Вселен­ной вообще нет. Действительно, это могли бы быть толь­ко силы давления вещества. Но даже если давление есть (а в далеком прошлом давление во Вселенной было огромным), то оно не создает гидродинами­ческой силы. Ведь такая сила возникает только при пе­репаде давления от места к месту. Вспомним, что мы не чувствуем никакой силы от большого давления нашей атмосферы из-за того, что внутри нас воздух создает точ­но такое же давление. Никакого перепада нет — нет и силы. Но наша Вселенная однородна. Значит, в любой момент времени и плотность, и давление (если оно есть) везде одинаковы, и никакого перепада давлений быть не может.

Итак, для определения динамики вещества нашего шара существенно только тяготение его массы, определя­емое по теории Ньютона. Но Вселенная однородна. Это значит, что все области ее эквивалентны. Если определить движение вещества в данном шаре, можно найти, как меняются в нем плотность, давление, то тем самым найдем изменение этих величин и в лю­бом другом месте, во всей Вселенной.

4. ПЕРВАЯ КОСМОЛОГИЧЕСКАЯ МОДЕЛЬ ВСЕЛЕННОЙ - МОДЕЛЬ ЭЙНШТЕЙНА

Первая космологическая модель была по­строена А. Эйнштейном в 1917 г. вскоре после создания им Общей теории относительности. Как и все тогда, он счи­тал, что Вселенная должна быть стационарна, она не может направленно эволюционировать. Эта модель создавалась более чем за десять лет до открытия Э. Хаббла. А. Эйнштейн, по-видимому, ничего не знал о больших скоростях некоторых галактик, которые к тому времени уже были измерены. К тому же в то время не было еще надежных доказательств, что галактики — действительно далекие звездные системы. Излагая свою Модель, Эйнштейн писал: «Самое важное из всего, что вам известно из опыта о распределении материи, заклю­чается в том, что относительные скорости звезд очень малы по сравнению со скоростью света. Поэтому я по­лагаю, что на первых порах в основу наших рассужде­ний можно положить следующее приближенное допуще­ние: имеется координатная система, относительно кото­рой материю можно рассматривать находящейся в течение продолжительного времени в покое».

Исходя из таких соображений, Эйнштейн ввел косми­ческую силу отталкивания, которая делала мир стацио­нарным. Эта сила универсальна: она зависит не от мас­сы тел, а только от расстояния, их разделяющего. Уско­рение, которое эта сила сообщает любым телам, разне­сенным на расстояние, должно быть пропорционально расстоянию. Силы отталкивания, если они, конечно, существуют в природе, можно было бы обнаружить в достаточно точных лабораторных опытах. Однако малость величины делает задачу ее лабораторного обнаружения совершенно безнадежной. Действительно, это ускорение пропорцио­нально расстоянию и в малых масштабах ничтожно. Легко подсчитать, что при свободном падении тела на поверхность Земли добавочное ускорение в 1030 раз меньше самого ускорения свободного падения. Даже в масштабе Солнечной системы или всей нашей Галактики эти силы ничтожно малы по сравнению с силами тяготе­ния Разумеет­ся, это отталкивание никак не сказывается на движении тел Солнечной системы и может быть обнаружено толь­ко при исследовании движений самых отдаленных на­блюдаемых галактик.

Так, в уравнениях тяготения Эйнштейна появилась космологическая постоянная, описывающая силы оттал­кивания вакуума. Действие этих сил столь же универ­сально, как и сил всемирного тяготения, т. е. оно не за­висит от физической природы тела, на котором проявля­ется, поэтому логично назвать это действие гравитацией вакуума.

Страницы: 1 2 3 4 5 6 7 8 9

Интересные статьи:

Сообщения о Солнечной системе
Сообщение об Астероидах Астероид в переводе на русский язык означает звездоподобный. Пояс астероидов занимает широкую поло­су между орбитами Марса и Юпитера, как бы отмечая границу между планетами земной группы и планетами-гигантами. Дол ...

Планета Нептун
НЕПТУН Нептун – восьмая планета от Солнца, большая планета Солнечной системы, относится к планетам – гигантам. Ее орбита пересекается с орбитой Плутона в некоторых местах. Еще орбиту Нептуна пересекает комета Галилея. Астрологический знак ...

Сварка в космосе
Введение В конце 50-х годов нашего столетия родилась новая отрасль человеческой деятельности — космонавтика. Об этом на весь мир возвестили сигналы первого советского спутника Земли, утвердив тем самым ведущую роль нашей страны в освоени ...