Организация и проведение актинометрических наблюдений во время солнечного затмения

Страница 3

В качестве примера наблюдений прямой солнечной радиации на рис.43 представлены графически результаты измерений, произведённых в Карадаге во время частного затмения Солнца 9 июля 1945 г. Так как наблюдения производились с фильтрами RG2 и ОG1 то отсчёты без фильтров отделены друг от друга промежутками в 3 минуты. Условия наблюдения были не вполне благоприятны, так как небо в стороне Солнца было покрыто тонкими перистыми облаками, которые во время затмения несколько раз находили на Солнце и понижали (хотя и не очень значительно) интенсивность радиации. Наряду с понижениями на кривой хода радиации можно видеть и небольшие аномальные повышения интенсивности (в промежутке 17 ч.30 м. - 17 ч.40 м), вызванные появлением в поле зрения актинометра ярких облаков, не закрывавших солнечного диска, но проходивших поблизости от него.

Отдельные точки на графике соответствуют результатам измерений. Сплошная кривая интерполирована по этим данным и представляет ход интенсивности радиации, каким он должен был бы получиться при отсутствии облаков. Пунктирная кривая представляет нормальный дневной ход радиации, который наблюдался бы без затмения. График наглядно показывает, что влияние затмения на интенсивность радиации может быть установлено со вполне удовлетворительной точностью, несмотря на искажения, внесённые влиянием облачности.

Аналогичные графики могут быть построены для участков спектра 290-525 mμ, 525-625 mμ и 625 - 2000 mμ.

При окончательной обработке наблюдений величины интенсивности радиации интересно сопоставить с величиной фазы и радиирующей площадью солнечного диска. Для такого сопоставления можно использовать не только абсолютные величины радиации, но и относительные. При этом под относительной величиной в данном случае понимается отношение измеренной при данной фазе интенсивности к той интенсивности, которая наблюдалась бы без затмения при неизменных прочих условиях. Интенсивность при открытом Солнце в этом случае может быть определена графической интерполяцией дневного хода радиации, как это сделано на рис. 1.

Большой интерес с геофизической точки зрения представляет выяснение вопроса об изменении прозрачности атмосферы во время затмения. Причиной изменения прозрачности может быть, например, усиление конденсационных процессов в атмосфере в полосе затмения, благодаря чему может возрасти количество и размеры помутняющих атмосферу водяных капелек и ледяных кристалликов. С другой стороны, в условиях ясного летнего дня в полосе затмения должны ослабевать восходящие конвективные потоки нагретого воздуха и вместо поднятия может даже происходить опускание охлаждённого воздуха. Такие процессы должны вызывать ослабление конденсации в атмосфере и увеличение её прозрачности. Окончательный результат может оказываться различным при различных состояниях атмосферы, и для полного выяснения вопроса необходимо проведение достаточного количества наблюдений.

Обычное определение характеристик прозрачности атмосферы перед началом затмения и после его окончания не даёт ответа на вопрос, как менялась прозрачность во время самого затмения. Но изменения прозрачности можно обнаружить по изменениям спектрального состава радиации. Правда, он меняется в течение дня и при неизменной прозрачности в результате изменения длины пути солнечных лучей в атмосфере (чем ближе к горизонту Солнце, тем большей относительной энергией в спектре обладают лучи длинных волн - красные и инфракрасные). Но этот дневной ход получается очень правильным и плавным, и влияние его легко исключить. Оставшиеся неисключёнными изменения спектрального состава будут свидетельствовать о наличии в атмосфере процессов, изменяющих её прозрачность. Так, уменьшение количества водяных паров в воздухе уменьшает поглощение радиации в длинноволновой части спектра и повышает долю этой части спектра в общем потоке солнечной радиации. Такое же действие должно оказывать уменьшение размеров и числа частиц конденсационной мутности, сильно рассеивающих длинноволновую радиацию. Процессы, идущие в противоположном направлении, должны приводить к относительному повышению энергии коротковолновой радиации.

Страницы: 1 2 3 4 5 6

Интересные статьи:

Пульсары
Введение На протяжении веков единственным источником сведений о звездах и Вселенной был для астрономов видимый свет. Наблюдая невооруженным глазом или с помощью телескопов, они использовали только очень небольшой интервал волн из всего м ...

Планета Меркурий
Меркурий Меркурий (снимок MESSENGER) Орбитальные характеристики Афелий 69 816 927 км 0,46669733 а. е. Перигелий 46 001 210 км 0,30749909 а. е. Большая полуось 57 909 068 км 0,38709821 а. е. Орбита ...

Вселенная, жизнь, разум
Введение Нет ничего более волнующего, чем поиски жизни и разума во Вселенной. Уникальность земной биосферы и человеческого интеллекта бросает вызов нашей веры в единство природы. Человек не успокоится, пока не разгадает загадку своего пр ...