Звездная аберрация против релятивистской астрономии
(2.6)
5. Искаженное отображение скорости света (явление).
Обратимся к выражению (2.5). Здесь возникает интересная ситуация.
a. Свет в любой инерциальной системе отсчета имеет одну и ту же скорость с.
b. Время T0 = R0/c , затраченное на прохождения расстояния R0, должно быть тем же и системе отсчета наблюдателя и источника (время едино!).
c. В силу того, что расстояние R отличается от R0, мы должны признать, что наблюдаемое (мнимое) расстояние R свет проходит с другой (мнимой) скоростью.
Наблюдатель может сказать, что свет прошел расстояние R (S*N) за время T0. Следовательно, свет должен был бы распространяться со скоростью (рис. 2), в то же время наблюдатель реально будет измерять в своей системе скорость c. Эта «трансформация» скорости возникла из-за относительного движения.
Запишем выражение для этой скорости
(2.7)
Заметим, что волновое число k0 при распространении вдоль SN и вдоль S*N в системе отсчета наблюдателя не претерпевает изменений. Изменяется лишь направление вектора k
0.
4. Эффект Доплера (явление).
Выражение для эффекта Доплера можно получить стандартным способом, но мы можем воспользоваться тем, что волновое число k0 сохраняет свою величину в системе отсчета наблюдателя и в базовой системе отсчета.
или
(2.8)
5. Аберрация света (явление).
Угол аберрации, определим как угол, связанный с изменением направления фронта волны воспринимаемого движущимся наблюдателем по отношению к направлению фронта волны в базовой системе отсчета.
(2.9)
6. Явление изменения ракурса движущегося источника (явление).
С явлением изменения направления наблюдаемого фронта волны прямо связано явление
изменения ракурса наблюдаемого источника. В системе отсчета источника лучи к наблюдателю распространяются под углом Θ0. Благодаря относительному движению наблюдатель будет воспринимать фронт волны так, как будто лучи подходят к нему под углом (рис. 4). Из-за этого наблюдаемый объект будет казаться для него повернутым на угол аберрации, как показано на рис. 4. Это явление, поскольку мы говорим о мнимом изображении. Сам объект не меняет своей ориентации в пространстве.
Рис. 4. 1 – направление лучей в системе отсчета источника излучения; 2 – направление лучей воспринимаемых наблюдателем в своей системе отсчета.
Явление изменения ракурса имеет прямую связь с явлением либрации.
Итак, мы рассмотрели явления, связанные и искажениями наблюдаемого мнимого изображения объекта. Реальный объект, как вы понимаете, не испытывает никаких искажений. Сразу же можно отметить промах Эйнштейна. Распространяя преобразование Лоренца на все без исключения, он так и «не понял», что превращает действительные объекты в их мнимые отображения
, полученные с помощью световых волн. Он рассматривал мнимые изображения (на всем серьезе) как «действительные объекты». Это положение является ключевым для понимания ошибок Эйнштейна. Теперь можно обратиться к «мысленным экспериментам» А. Эйнштейна.
3. “Gedanken experiments” и локация Венеры
Анализ теории относительности А. Эйнштейна невозможен без анализа электродинамики. Исследуя проблемы электродинамики, мы получили результаты, которые до сих пор не нашли отражения в научной литературе.
a. Оказалось, что электромагнитные поля волны и поля зарядов не только обладают различными свойствами. Поэтому переход от волновых полей к квазистатическим полям принципиально невозможен. Это доказано, исходя из энергетических соотношений [4].
b. В общем случае при ускоренном движении заряды не могут излучать электромагнитных волн. Они могут переизлучать волны, только когда они взаимодействуют с электромагнитной волной [5], [6]. Действительно, волна может воздействовать на заряд и менять его кинетическую энергию. При этом сама волна меняется. Реакцией заряда на это воздействие является рассеяние волны зарядом. На фоне невозмущенной волны появляется переизлученная волна, которая распространяется от заряда (диссипативный процесс).
c. С этой точки зрения любой заряд или материальное тело становится источником вторичного излучения. Для отраженной и преломленной волн независимо от движения первичного источника точка отражения в среде является источником вторичного излучения. С ней связана базовая система отсчета вторичных волн.
Рис. 5
d. Заметим, что электромагнитная волна в вакууме принципиально отличается от электромагнитной волны в среде. Распространение волны в среде жестко связано с самой средой. Для описания поведения волны в среде применимы приемы и методы, используемые сторонниками теории эфира. Этот важный факт остался вне поля зрения физиков.
Интересные статьи:
Модель устойчивой мировой системы
Введение
Несмотря на высокий уровень астрономических сведений народов древнего Востока, их взгляды на строение мира ограничивались непосредственными зрительными ощущениями. Поэтому в Вавилоне сложились взгляды, согласно которым Земля имее ...
Спектр излучений Вселенной
Введение
Излучение Вселенной, названное реликтовым, впервые было открыто американскими физиками Пензиасом и Вильсоном в 1965 г. за что им была присуждена Нобелевская премия в 1978 г. Анализ спектра этого излучения показал, что его зависи ...
Особенности гравитационного взаимодействия
Введение
Одна из аксиом современной науки гласит: любые материальные объекты во Вселенной связаны между собой силами всемирного тяготения. Благодаря этим силам формируются и существуют небесные тела – планеты, звезды, галактики и Метагал ...