Звездная аберрация против релятивистской астрономии
e. Если точка падения падающего луча перемещается по поверхности, тогда вместе с освещенной лучом областью (вторичный источник), перемещается базовая система отсчета. Такой подход необходим для правильного вычисления результатов и объяснения опытов Физо, Майкельсона и других.
«
Gedanken
Experimts
».
Теперь мы можем проанализировать второй мысленный эксперимент А. Эйнштейна. В учебнике [7] дано описание мысленных экспериментов Эйнштейна. Мы изложим новое объяснение второго эксперимента.
Этот мысленный эксперимент можно проводить не только с зеркалом, но и с любым материальным телом, которое способно отражать электромагнитные волны (свет).
Пусть тело движется относительно наблюдателя. Мы посылаем к нему световой импульс и принимаем импульс, который отражен от него. Затем мы сравниваем результаты, полученные для двух инерциальных систем отсчета («тело» и «наблюдатель»).
Рассмотрим процесс в системе отсчета неподвижного наблюдателя. Мы разделим этот процесс на две стадии:
a. распространение света от наблюдателя к движущемуся телу,
b. распространение отраженного сигнала обратно к наблюдателю.
Рассмотрим процесс в системе отсчета, связанной с наблюдателем (рис. 6).
Первая стадия. В момент t1, когда движущееся тело проходит точку 1, наблюдатель посылает световой сигнал в точку 2. В момент времени t2 сигнал встречается в точке 2 с телом. Поскольку источник света покоится в базовой системе отсчета, световой луч пройдет расстояние R01 без искажений для наблюдателя.
Вторая стадия. В момент времени t2 световой луч отразится от тела. Наблюдателю, принимающему сигнал в момент времени t3, будет казаться, что свет прошел расстояние R2. Однако в момент приема тело будет в точке 3. Таким образом, действительное расстояние между наблюдателем и телом в момент приема будет R02.
Итак, расстояние, пройденное световым сигналом, будет равно сумме расстояний R01 и R02. Время, затраченное на «путешествие» сигнала T = (R01 + R02)/c.
Рис. 6.
Теперь рассмотрим этот же процесс в системе отсчета, связанной с телом (рис. 7).
Первая стадия. Мы обращаем внимание на то, что наблюдатель относительно тела будет двигаться в обратную сторону. Итак, в момент времени t1 в точке 1 движущийся наблюдатель запускает световой импульс. Для наблюдателя, покоящегося на неподвижном теле и принявшем в момент t2 световой сигнал, будет казаться, что световой импульс прошел расстояние R1. На самом деле в момент приема действительное расстояние, которое прошел свет, будет равно R01.
Вторая стадия. Далее сигнал отражается от тела и движется к точке встречи 3, где он возвращается в момент t3 к движущемуся наблюдателю. Поскольку свет распространяется в базовой системе отсчета, он проходит действительное расстояние R02.
Таким образом, как и в системе отсчета, связанной с наблюдателем, в системе отсчета тела свет проходит расстояние, равное R01 + R02, затрачивая на это время T = (R01 + R02)/c.
Рис. 7.
Как мы видим, эти времена одинаковы, и нет никакого замедления времени в одной системе отсчета по отношению к другой. Эйнштейн не принял во внимание, что наблюдаемое расстояние соответствует действительному только, если наблюдатель покоится в базовой системе отсчета. Современники утверждают, что молодой Эйнштейн слабо разбирался в математике. В физике, как мы видим, он разбирался не лучше.
Локация Венеры.
Существует ряд экспериментов, результаты которых противоречат выводам СТО А. Эйнштейна. Одним из них являются известные результаты по радиолокации Венеры [8]. Прежде, чем переходить к описанию эксперимента, рассмотрим три модели определения расстояния радиолокационным способом.
Допустим, что мимо нас со скоростью V
движется объект, расстояние до которого нам необходимо определить методом радиолокационных измерений. Для этой цели мы посылаем электромагнитный импульс к этому объекту и принимаем отраженный сигнал. Измеряя время распространения сигнала и зная скорость света, мы сможем определить расстояние до объекта. Здесь возможны, как минимум, три модели:
1) Скорость света и скорость движения объекта складываются по закону параллелограмма (c
-
v
теория [8]).
2) Релятивистский вариант (Специальная теория относительности). Распространение излученного сигнала к объекту и обратно происходит со скоростью света.
3) Модель, использующая новую интерпретацию преобразования Лоренца.
Не приводя простых расчетов, поместим формулы для этих моделей в Таблицу 1.
Таблица 1
|
Точная формула |
Приближенное выражение | |
|
R0 – расстояние до Венеры в момент приема отраженного сигнала. | ||
|
Первая модель (c + v) [8] |
|
|
|
Вторая модель (СТО А. Эйнштейна) |
|
|
|
Третья модель (новая интерпретация пр. Лоренца) |
|
|
Интересные статьи:
Структура Вселенной
Введение
Вселенная как целое является предметом особой астрономической науки — космологии, имеющей древнюю историю. Истоки ее уходят в античность. Космология долгое время находилась под значительным влиянием религиозного мировоззрения, б ...
Виды космических аппаратов
КОСМИЧЕСКИЕ АППАРАТЫ ИССЛЕДОВАНИЯ ПРИРОДНЫХ РЕСУРСОВ ЗЕМЛИ И КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ СЕРИИ РЕСУРС-Ф
Для исследования природных ресурсов Земли и контроля окружающей среды разработана космическая система Ресурс-Ф, которая включает в себя ...
Концепция атомизма как концепция корпускулярно-волнового дуализма
Введение
Когда говорят о современной физике, обычно имеют в виду две фундаментальные концепции, возникшие в двадцатом веке – теорию относительности и квантовую теорию как физическую теорию микромира. Однако в последнее двадцатилетие к эти ...


