Уравнение состояния сверхплотного вещества

Страница 2

которое будет встречаться в дальнейшем.

Рассмотрим два важных предельных случая уравнения состояния (8). В нерелятивистском случае параметр хе мал по сравнению с единицей. Разложим Р в ряд по степеням хе и отбросим малые величины в выражениях ρ и Р; исключая параметр х, получим

Р=Aρ5/3, (10)

Где

A= )5/3-23 )5/3

Величина η= A/Z для всех ядер, за исключением водорода.

Р=B ρ4/3, (11)

Где

B=5,6410-14 )4/3

В выражении для плотности энергии мы опустили b и ρе.

Энергия связи нуклона в ядре имеет значение в интервале 0<b8 Мэв. У порога исчезновения Aе-фазы Р 1029 эргсм-3, а отношение парциальных плотностей энергии электронов и ядер порядка

Таким образом, b и ρе действительно достаточно малы и в расчетах звездных конфигураций не могут играть сколько-нибудь заметную роль.

В приведенном уравнении состояния не учтено взаимодействие частиц. Здесь мы имеем дело только с кулоновскими силами . Было показано, что потенциальная энергия электрона, обусловленная электрическими силами, мала по сравнению с его кинетической энергией, причем с возрастанием плотности отношение их уменьшается. Таким образом, приближение идеального газа здесь вполне оправдано. Ряд поправок к выражению давления (8), обусловленных кулоновскими взаимодействиями. Поправки к Р некоторую роль могут играть лишь при больших Z и х<1. Изменения, обусловленные температурой, тоже несущественны. Здесь важным является эффект зависимости А/Z от граничной энергии электронов.

Уравнение состояния (8) применимо до x=46, чему соответствует плотность ρ2,41032 эргсм-3. При больших плотностях мы имеем дело с Aen-фазой, где уравнение состояния другое.

Введем параметр

tn =4arsh xn ,

тогда ρп и Рп запишутся в следующем виде:

ρn=Kn(sh tn - tn),

Pn=Kn(sh tn - 8sh).(13)

Учитывая также энергию атомных ядер, парциальное давление и плотность энергии электронов, для уравнения состояния Aen-фазы вещества получаем

ρ=Kn(sh tn - tn)+mnc2,

P=Kn(sh tn - 8sh)+Pe.(14)

Здесь ρе и Рe —плотность энергии и давление электронного газа. Заметим, что чуть выше порога появления Aen-фазы парциальная плотность энергии и давление электронов (можно даже сказать — плотность энергии атомных ядер) достаточно малы по сравнению с соответствующими величинами для нейтронного газа. Здесь почти на всем протяжении фазы энергия и давление системы в основном определяются нейтронным газом.

Вообще говоря, в Aen-фазе следовало бы учитывать ядерные взаимодействия между нейтронами. Их вклад несуществен для энергии, но, по-видимому, является важным для давления: при заданном числе нейтронов учет ядерных сил приведет к уменьшению давления. Насколько нам известно, в рассматриваемой области плотностей теория ядерной материи как следует не разработана, поэтому мы довольствуемся приближением идеального газа. Уравнение состояния (14) справедливо в области плотностей 2,41032 ρ 5.451034 эргсм-3.

Об асимптотическом виде уравнения состояния

Целесообразно сначала исследовать асимптотическое поведение вида уравнения состояния при чрезвычайно больших плотностях. Здесь можно достичь определенного результата, исходя из совершенно общих соображений. В опытах по рассеянию быстрых протонов на нуклонах было установлено наличие весьма интенсивных сил отталкивания, действующих на расстояниях r210-14 см. Этот экспериментальный факт дает некоторое основание утверждать, что в надъядерной области с возрастанием плотности массы состояние барионной плазмы (мы говорим о барионной плазме, поскольку концентрация лептонов в ней очень мала) все больше отходит от газа и постепенно приближается к состоянию идеальной жидкости.

Страницы: 1 2 3

Интересные статьи:

Созвездия северного полушария
Введение Человечество с древности интересовало ночное небо. Положение звёзд над горизонтом отображало смену времён года, что было важно для сельского хозяйства. Наиболее полные сведения об астрономии древности дошли до нас со времён Древн ...

Покорение космоса
1. Остроумные выдумки фантастов всех времён и народов Фантазия есть качество величайшей ценности… У каждого человека, как и у всего человечества, есть свои заветные мечты и желания. Завоевать межпланетные пространства, проникнуть в ин ...

Пространственно-временная метрика, уравнения геодезических. Ньютоново приближение
1. ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ МЕТРИКА В четырехмерном римановом пространстве общее выражение для интерваламежду двумя событиями выражается производными следующим образом: (1.1.1) где— свободные индексы (а не обозначения степеней), и, к ...